16 research outputs found

    Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study

    Get PDF
    A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4

    Long-Term Clinical Outcomes of Care Management for Chronically Depressed Primary Care Patients: A Report From the Depression in Primary Care Project

    No full text
    PURPOSE Recent studies examining depression disease management report improvements in short-term outcomes, but less is known about whether improvements are sustainable over time. This study evaluated the sustained clinical effectiveness of low-intensity depression disease management in chronically depressed patients

    Panchromatic light funneling through the synergy in hexabenzocoronene–(metallo)porphyrin–fullerene assemblies to realize the separation of charges

    No full text
    Here, we present a novel butadiyne-linked HBC-ethynyl-porphyrin dimer, which exhibits in the ground state strong absorption cross sections throughout the UV and visible ranges of the solar spectrum. In short, a unidirectional flow of excited state energy from the HBC termini to the (metallo)porphyrin focal points enables concentrating light at the latter. Control over excitonic interactions within, for example, the electron-donating porphyrin dimers was realized by complexation of bidentate ligands to set up panchromatic absorption that extends all the way into the near-infrared range. The bidentate binding motif was then exploited to create a supramolecular electron donor–acceptor assembly based on a HBC-ethynyl-porphyrin dimer and an electron accepting bis(aminoalkyl)-substituted fullerene. Of great relevance is the fact that charge separation from the photoexcited HBC-ethynyl-porphyrin dimer to the bis(aminoalkyl)-substituted fullerene is activated not only upon photoexciting the HBCs in the UV as well as the (metallo)porphyrins in the visible but also in the NIR. Implicit is the synergetic interplay of energy and charge transfer in a photosynthetic mimicking manner. The dimer and bis-HBC-ethynyl-porphyrin monomers, which serve as references, were probed by means of steady-state as well as time-resolved optical spectroscopies, including global target analyses of the time-resolved transient absorption data

    Resonance-enhanced charge delocalization in carbazole-oligoyne-oxadiazole conjugates

    Get PDF
    There are notably few literature reports of electron donor-acceptor oligoynes although they offer unique opportunities for studying charge transport through ‘all-carbon’ molecular bridges. In this context, the current study focuses on a series of carbazole–(C≡C)n-2,5-diphenyl-1,3,4-oxadiazoles (n = 1-4) as conjugated π-systems, in general, and explores their photophysical properties, in particular. Contrary to the behavior of typical electron donor-acceptor systems, for these oligoynes the rates of charge recombination after photoexcitation increase with increasing electron donoracceptor distance. To elucidate this unusual performance, detailed photophysical and time-dependent density functional theory investigations were conducted. Significant delocalization of the electron density along the bridge indicates that the bridging states come into resonance with either the electron donor or acceptor, thereby accelerating the charge transfer. Moreover, the calculated bond lengths reveal a reduction in bond length alternation upon photoexcitation, indicating significant cumulenic character of the bridge in the excited state. In short, strong vibronic coupling between the electrondonating N-arylcarbazoles and the electron-accepting 1,3,4-oxadiazoles accelerates the charge recombination as the oligoyne becomes longer

    A water-soluble, bay-functionalized perylenediimide derivative-correlating aggregation and excited state dynamics

    No full text
    The aggregation and the photophysics of a water soluble perylenediimide (PDI) derivative that features two bromine substituents in the bay positions has been probed. Non-fluorescent aggregates were found to be present at concentrations of 1.0 7 10-5 M. In situ small-angle X-ray scattering (SAXS) measurements and complementary molecular modeling showed the presence of PDI aggregates. In their singlet excited states, the PDI aggregates are characterized by distinct transient fingerprints and rapid deactivation, as revealed by pump-probe experiments on the femto-, pico-, nano-, and microsecond timescales. The product of this deactivation is a PDI triplet excited state. The efficiency of the triplet formation depends on the concentration, and hence on the degree of aggregation. Notably, for PDI concentrations in the range of the critical micelle concentration, the efficiency of intersystem crossing is close to zero. In short, we have demonstrated, for the first time, aggregation-induced formation of triplet excited states for PDI derivatives
    corecore